Acyclic Quantum Cluster Algebras
نویسندگان
چکیده
This thesis concerns quantum cluster algebras. For skew-symmetric acyclic quantum cluster algebras, we express the quantum F -polynomials and the quantum cluster monomials in terms of Serre polynomials of quiver Grassmannians of rigid modules. Then we introduce a new family of graded quiver varieties together with a new t-deformation, and generalize Nakajima’s t-analogue of q-characters to these constructions. This allows a deformed monoidal (pseudo-)categorification approach to bases of the quantum cluster algebras. When the initial seed is acyclic, then for any choice of coefficients and quantization, these characters give us a dual PBW basis, a generic basis, and a dual canonical basis with positive structure constants, such that each of the latter two contains all the quantum cluster monomials. As a byproduct, we obtain the positivity conjecture for the quantum cluster algebras which contain acyclic seeds.
منابع مشابه
The Multiplication Theorem and Bases in Finite and Affine Quantum Cluster Algebras
We prove a multiplication theorem for quantum cluster algebras of acyclic quivers. The theorem generalizes the multiplication formula for quantum cluster variables in [19]. Moreover some ZP-bases in quantum cluster algebras of finite and affine types are constructed. Under the specialization q and coefficients to 1, these bases are the integral bases of cluster algebra of finite and affine type...
متن کاملGreen’s Formula with C-action and Caldero-keller’s Formula for Cluster Algebras
It is known that Green’s formula over finite fields gives rise to the comultiplications of Ringel-Hall algebras and quantum groups (see [Gre], see also [Lu]). In this paper, we prove a projective version of Green’s formula in a geometric way. Then following the method of Hubery in [Hu2], we apply this formula to proving Caldero-Keller’s multiplication formula for acyclic cluster algebras of arb...
متن کاملTriangular Bases in Quantum Cluster Algebras
A lot of recent activity has been directed toward various constructions of “natural” bases in cluster algebras. We develop a new approach to this problem which is close in spirit to Lusztig’s construction of a canonical basis, and the pioneering construction of the Kazhdan–Lusztig basis in a Hecke algebra. The key ingredient of our approach is a new version of Lusztig’s Lemma that we apply to a...
متن کاملNotes on the Cluster Multiplication Formulas for 2-calabi-yau Categories
Y. Palu has generalized the cluster multiplication formulas to 2Calabi-Yau categories with cluster tilting objects ([Pa2]). The aim of this note is to construct a variant of Y. Palu’s formula and deduce a new version of the cluster multiplication formula ([XX]) for acyclic quivers in the context of cluster categories. Introduction Cluster algebras were introduced by S. Fomin and A. Zelevinsky [...
متن کاملOn Homomorphisms from Ringel-hall Algebras to Quantum Cluster Algebras
In [1],the authors defined algebra homomorphisms from the dual RingelHall algebra of certain hereditary abelian categoryA to an appropriate q-polynomial algebra. In the case that A is the representation category of an acyclic quiver, we give an alternative proof by using the cluster multiplication formulas in [9]. Moreover, if the underlying graph of Q is bipartite and the matrix B associated t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012